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Abstract

An overview of a new metric for measuring perceived uni-
formity of hardcopy, color prints is presented. We discuss
the algorithm, and present examples of how the metric can
be applied to a wide range of non-uniformity problems.

Introduction

Uniformity is one of the most important attributes of image
quality of output from color printers or copiers, and present
a challenge to all printing technologies. There is a vast
range of different “looks” of non-uniformities, both for a
given technology and between different technologies, which
makes it difficult to establish measurement techniques which
correlate to human visual perception of uniformity and that
can be used to compare different technologies.

In the DAC system for characterizing image quality,1

uniformity is segmented into two attributes: MacroUnifor-
mity and MicroUniformity. MicroUniformity is loosely
defined as characterizing any non-uniformities which are
visible even in very “busy” images that contain only small
regions of nominally uniform color. More rigorously, DAC
MicroUniformity can be defined to consider those non-uni-
formities which are visible even when the image is viewed
through a mask with a 6mm diameter aperture. With this
definition, MicroUniformity considers, among others, the
following types of issues:
• What is commonly referred to as graininess, for

example as seen in photographs due to the film grain,
or as seen in electrophotographic prints and caused by
process noise, especially during development.

• The “noisy-looking” pattern resulting from stochastic
screens, seen most commonly from ink-jet printers.

• The periodic, cluster-dot screen seen in most litho-
graphic, electrophotographic and other printing technol-
ogies.

• High frequency moire pattern seen where halftone
screens of two or more separations beat against each
other.

• High frequency periodic bands, for example caused by
motion quality deficiencies.

• Non-periodic, high-frequency, streaks, for example
caused by misdirected jets in an ink-jet printer.
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From a measurement point of view, there are several
challenges. For purposes of benchmarking it is often
necessary to measure and compare print samples that exhibit
different types of MicroUniformity, for example a
comparison between samples where the main contribution to
MicroUniformity is the pattern from stochastic screening
with samples that are dominated by periodic screens and
process noise. To compare such print samples it is necessary
to use technology-independent Appearance Metrics2 as
opposed to technology specific Diagnostic Metrics. For
example, a metric that describes uniformity in terms of dot
size and shape regularity would not work at all.

Another challenge comes from applications for product
development teams. When a specification for MicroUnifor-
mity has been determined, partly based on benchmarking, a
product development team needs to track that measure and
improve the product performance to reach the goal level.
However, during product development you are often faced
with a multitude of print quality defects, all of which are
being worked on at the same time. This means that one
print quality defect can potentially contaminate the
measurements of another print quality attribute. For
example, in the case of ink jet, there may be problems with
paper advance motion quality that causes streaks, which in
turn make it difficult to measure the obtainable
MicroUniformity quality level corresponding to various ink
formulations. Another example of a similar problem, taken
from electrophotography, is the need to measure process
noise in the presence of halftone screens. With a commonly
used graininess3 measurement technique, based on Wiener
spectrum estimates, the halftone screen, if it is coarse, can
dominate the graininess measure.

Several techniques have been developed in the past to
address some of these problems. In the case where data from
a slit-scanning micro densitometer is used to estimate the
Wiener spectrum, peaks caused by a single halftone screen
can be eliminated in two ways. Through signal processing
of the spectrum,4 or through an “aperture filtering technique”
used during the data acquisition.5 In the case of aperture fil-
tering, the width of the scanning slit is set equal to the
period of the halftone screen, thus effectively filtering out
the halftone frequency. However, this technique has severe
limitations in that it can only be applied to images with a
single halftone screen, and in particular not to images with
several rotated dot screens.
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In this paper we report on development of a new image
quality metric to address many of the issues described above.

Measurement Environment

Many of the technical issues with measuring uniformity as
described above, can be overcome in a straightforward man-
ner if an imaging scientist is allowed to do manipulation and
analysis on an image by image basis. The requirements to
this work was, that the method be suitable not only for
research purposes, but also for fully automated, production
environments. The metric has been developed as a module
within the IQAF6 image quality analysis system, and is used
with image input from drum scanners as well as flatbed
scanners. The IQAF system takes care of calibrating the
images, scanned either in RGB mode, or in a channel that is
complementary to the color being measured, such that the
analysis can be defined in terms of images represented in
CIELab or other visual color space.

Algorithm

The main advantages of the method lies in its capabilities to
separate the spatial structure into different components. This
separation can be performed both for gray scale images, rep-
resenting CIELab L*, and for full color images. We will here
report only on the analysis of the luminance part of a color
image, since the luminance variations are visually most sig-
nificant for MicroUniformity.

The algorithm operates on an image representing photo-
pic reflectance. The image has typically been scanned at
600dpi sampling. The following steps are taken.

First, a Fast Fourier Transform (FFT) of the image is
calculated, and a binary mask in frequency space is generated,
which classifies each pixel in the Fourier image as
belonging either to the “structured image” or to the “unstruc-
tured image.” This classification is done based on a
statistical analysis of the Fourier image. At each spatial
frequency the average and standard deviation of the Fourier
amplitude is calculated, taken over a narrow frequency band,
and over all orientations. Those pixels where the amplitude
exceeds the average (at that frequency) by more than a
certain, fixed number of standard deviations are marked as
belonging to the structured image. Pixels corresponding to
frequencies below a certain threshold are all marked as
belonging to the unstructured image, since there is not
sufficient statistical information to reliably make a proper
classification.

Secondly, the original photopic reflectance image is
processed through a model of human perception of
luminance variations at a viewing distance of 40cm. This is
done via a kernel operation in real space where, to gain
computational advantage, the kernel is represented as a sum
of Gaussians. If necessary, this kernel is modified depending
on the image input device used to capture the image, such
that devices with more limited resolving power use a kernel
that blur the image to a correspondingly lesser degree.
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Thirdly, the visually processed image is separated into
two components. Its FFT is calculated and split using the
binary mask, and then each part is transformed back into real
space. The resulting real space images are denoted “struc-
tured” and “unstructured,” respectively. These two images are
then further processed independently, to yield information on
the different types of non-uniformities in the image.

For example, to calculate a measure equivalent to the
previously mentioned metric for graininess, the unstructured
image is passed through a high-pass filter, in order to filter
out such variations as mottle, and the standard deviation of
the resulting image is calculated. Based on visual scaling
experiments a “density-factor” has been determined, and the
standard deviation multiplied by the density-factor is taken as
a measure of graininess.

The structured image can be analyzed similarly, to pro-
vide information on the perceptible non-uniformities in this
category.

Examples

The section gives examples from ink jet and electrophoto-
graphic printers. In each case three images are shown: The
original scanned image, the unstructured image, and the
structured image. To better ensure a reproduction of the
details of interest the images have been contrast enhanced.
However, each of the three images within one set, have been
enhanced by the same amount.

Notice that the exact same algorithm were applied to all
the images.

Streaks in Ink Jet Print Sample
The images in Figure 1 show processing of an ink jet

print sample that shows both horizontal streaks as well as
two-dimensional random density fluctuations.

A

B                 C

Figure 1. (A) Original scan of ink jet sample showing both
streaks and two-dimensional noise. (B) The image component
classified as “structured” shows the horizontal streaks. (C) The
image component classified as “unstructured” shows the random
variation.
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A noise measure applied to the image in Figure 1C will
correctly quantify the two-dimensional random fluctuations,
without being influenced by the horizontal streaks.

A
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Figure 2. (A) Original scan of a halftone image from an elec-
trophotographic printer, showing a strong screen, vertical
streaks, and two-dimensional noise. (B) The image component
classified as “structured” contains both the screen and the verti-
cal streaks. (C) The image component classified as “unstruc-
tured” contains the random variation.

Screen in Electrophotographic Images
The images in Figure 2 are from an electrophotographic

printer. The original image contained several rotated dot
screens, and showed weak vertical streaks. Figure 2 (B) and
(C) show an excellent separation of the periodic screen from
the random fluctuations.

Figure 3. Original scan of a halftone image from an electro-
photographic printer showing, halftone screen, banding,
streaks and two-dimensional noise.
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Figure 4. The structured image corresponding to Figure 3,    after
processing       with        a      visual       filter   . This shows bands, streaks, and
remnants of the halftone screen.

Figure 5. The unstructured image corresponding to Figure 3 ,
after        processing         with        a         v i s       ual       filter   . This random two-dimen-
sional fluctuations, as well as low frequency mottle.

Banding and Noise in Electrophotographic
Images

The image in Figure 3 represents the original scan of a
print sample from an electrophotographic printer. It shows a
relatively high-frequency screen, vertical periodic bands,
horizontal streaks, as well as random two-dimensional noise.

In Figure 4 is shown the corresponding structured
image, after it has been processed through a visual filter.
This image shows bands, streaks, and, due to the visual
filter, only remnants of the screen. The unstructured,
visually filtered image is shown in Figure 5. By further
processing of the unstructured image, separate measures for
high-frequency (graininess) and lower-frequency (mottle)
variations can easily be obtained.
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Conclusion

An image processing technique has been described, which
allows an image to be separated into two components, repre-
senting different aspects of image quality. To obtain an over-
all measure of MicroUniformity it is important that such a
separation is performed, since human observers have a dif-
ferent emotional response to the different types of varia-
tions—even if the variations on a physical scale have the
same amplitude.
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